Journal of Organometallic Chemistry, 327 (1987) 17-29 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

SYNTHESE UND REAKTIVITÄT VON DIENYLMETALL-VERBINDUNGEN

XXVIII *. ÜBER KATIONEN DES TYPS $[C_5H_5Fe(CO)L(EMe_2)]^+$ (E = S, Se, Te)

N. KUHN*, H. SCHUMANN und E. ZAUDER

Fachbereich 6 (Chemie) der Universität (GH) Duisburg, Lotharstrasse 1, D-4100 Duisburg 1 (B.R.D.) (Eingegangen den 17. Dezember 1986)

Summary

The chiral cations, $[CpFe(CO)(EMe_2)L]^+$, are obtained both by reaction of $[CpFe(CO)(EMe_2)_2]^+$ with the ligands (L) by heating, and by irradiation of the cations $[C_5H_5Fe(CO)_2EMe_2]^+$ in the presence of L (E = S, Se, Te; L = PR₃, AsR₃, SbR₃). The inversion about the chalcogen atom is investigated by DNMR spectroscopy. Compounds of the type $[C_5H_5Fe(TeMe_2)L_2]^+$ are formed by irradiation of $[C_5H_5Fe(CO)_2(TeMe_2)]^+$ and the ligands $(L_2 = 2 PR_3, R = CH_3, OCH_3, OC_6H_5; L_2 = R_2P(CH_2)_nPR_2, R = C_6H_5, n = 1,2,3)$. ⁷⁷Se and ¹²⁵Te NMR data vary according to the donor properties of the ligand L in the complexes.

Zusammenfassung

Die chiralen Kationen $[C_5H_5Fe(CO)(EMe_2)L]^+$ wurden sowohl durch thermische Umsetzung der Kationen $[C_5H_5Fe(CO)(EMe_2)_2]^+$ mit den Liganden L als auch durch Photolyse der Kationen $[C_5H_5Fe(CO)_2EMe_2]^+$ in Gegenwart von L erhalten $(E = S, Se, Te; L = PR_3, AsR_3, SbR_3)$. Die Inversion am Chalcogen-Atom wird mittels DNMR-Spektroskopie untersucht. Verbindungen des Typs $[C_5H_5Fe(Te-Me_2)L_2]^+$ wurden durch Bestrahlung von $[C_5H_5Fe(CO)_2TeMe_2]^+$ in Gegenwart der Liganden gebildet $(L_2 = 2 PR_3, R = CH_3, OCH_3, OC_6H_5; L = R_2P(CH_2)_nPR_2, R = C_6H_5, n = 1,2,3)$. ⁷⁷Se- und ¹²⁵Te-NMR-Daten variieren in Abhängigkeit von den Donoreigenschaften der Liganden L in den Komplexen.

Einleitung

Koordinationsverbindungen von Thioethern und deren Selen- und Telluranalogen haben in den letzten Jahren steigendes Interesse gefunden [1]. Cyclopen-

0022-328X/87/\$03.50 © 1987 Elsevier Sequoia S.A.

^{*} XXVII. Mitteilung s. Lit. 6.

18

tadienyleisen-Komplexe dieser Liganden waren bis vor kurzer Zeit nur in Form einiger Kationen des Typs $[C_5H_5Fe(CO)_2SR_2]^+$ bekannt [2]. Die Synthese der Kationen $[C_5H_5Fe(CO)(EMe_2)_2]^+$ (E = S, Se, Te) [3] und deren dynamisches Verhalten bezüglich der Inversion am Chalkogenatom [4] sowie das interessante Synthesepotential von Cyclopentadienyl-Thioetherkomplexen anderer Metalle [5,6] veranlassten uns zur Untersuchung der Substanzklasse $[C_5H_5Fe(CO)(SMe_2)L]^+$.

Ergebnisse

Wir haben kürzlich beschrieben, dass die Verdrängung eines Liganden EMe₂ in den Kationen $[C_5H_5Fe(CO)(EMe_2)_2]^+$ durch nucleophile Anionen X zu Neutralkomplexen des Typs $C_5H_5Fe(CO)(EMe_2)X$ führt [3]. Tatsächlich lässt sich das dieser Reaktion zugrundeliegende Prinzip auch auf die Synthese der Kationen $[C_5H_5Fe(CO)(EMe_2)L]^+$ übertragen. So liefert die Umsetzung von $[C_5H_5-Fe(CO)(SMe_2)_2]BF_4$ (I) mit einem Äquivalent der Liganden $E(C_6H_5)_3$ (E = P, As, Sb) in siedendem Benzol bzw. Dichlorethan in guter Ausbeute die Komplexe $[C_5H_5Fe(CO)(SMe_2)(E(C_6H_5)_3)]BF_4$ (IIa-c, Gl. 1). In gleicher Weise werden die

(E = P (a), As (b), Sb(c))

Komplexe $[C_5H_5Fe(CO)(SMe_2)(P(OR)_3)]BF_4$ (IIIa, b, $R = CH_3$, C_6H_5 , Gl. 2) erhalten, die gegenüber den Kationen II erheblich labiler sind.

I +
$$P(OR)_3 \xrightarrow{\Delta} OC \xrightarrow{Fe} P(OR)_3$$
 (2)
SMe₂ (IIIa, b)

 $(R = CH_3(a), C_6H_5(b))$

Dieses Verfahren lässt sich zur Synthese zahlreicher weiterer Kationen des Typs $[C_5H_5Fe(CO)(SMe_2)L]^+$ anwenden (z.B. L = PMe_3, SeMe_2, TeMe_2), liefert jedoch in diesen Fällen gegenüber der nachfolgend beschriebenen photochemischen Substitution von CO in $[C_5H_5Fe(CO)_2SMe_2]^+$ weniger befriedigende Resultate.

Erwärmt man eine ca. 10% ige Lösung von I in CD₃CN, so lässt sich das Kation $[C_5H_5Fe(CO)(SMe_2)(CD_3CN)]^+$ ¹H-NMR-spektroskopisch nachweisen ($\delta(C_5H_5)$ 4.87, $\delta(CH_3)$ 2.15 ppm); die Verbindung zersetzt sich jedoch beim Versuch der Isolierung. Weiteres Erwärmen führt zur Bildung des Kations $[C_5H_5Fe(CO)-(CD_3CN)_2]^+$ ($\delta(C_5H_5)$ 4.90 ppm; zur Synthese von $[C_5H_5Fe(CO)(CH_3CN)_2]^+$ vgl. [7]).

Eine zweite Synthesemöglichkeit eröffnet sich in der photochemisch induzierten Substitution von CO in kationischen Dicarbonylkomplexen. Die Kationen $[C_5H_5Fe(CO)(SMe_2)L]^+$ (Va-d) werden durch Umsetzung von $[C_5H_5Fe(CO)_2-SMe_2]BF_4$ (IV) mit den Liganden SeMe₂, TeMe₂, PMe₃ und P(NMe₂)₃ erhalten. (Gl. 3). Auf gleichem Wege sind auch die Verbindungen II zugänglich, jedoch bietet das in Gl. 1 genannte Verfahren hier präparative Vorteile.

 $(L = SeMe_2 (a) , TeMe_2 (b) , PMe_3 (c) , P(NMe_2)_3 (d))$

Die Kationen V sind prinzipiell auch durch photochemische Umsetzung von $[C_5H_5Fe(CO)_2L]^+$ mit SMe₂ zugänglich. Die NMR-spektroskopische Kontrolle der Reaktion gem. Gl. 3 zeigt tatsächlich die Gegenwart der genannten Kationen im Falle von L = PMe₃ und P(NMe₂)₃, so dass hier primär vor der CO-Abspaltung ein Austausch der Sulfan-Gruppe gegen die Phosphan-Liganden zumindest teilweise erfolgt; der Einsatz von IV anstelle der Kationen $[C_5H_5Fe(CO)_2L]^+$ erbringt jedoch bessere Resultate. Der gem. Gl. 3 erhaltene Komplex $[C_5H_5Fe(CO)(SMe_2)(P(t-Bu)_3]BF_4$ wurde nicht analysenrein erhalten (¹H-NMR: $\delta(C_5H_5)$ 4.97, $\delta(CH_3)$ 2.32, $\delta(C(CH_3)_3)$ 1.52 (d) ppm, J 10.8 Hz).

Frühere Versuche hatten ergeben, dass die Stabilität der Bindung Fe-E in den Kationen $[C_5H_5Fe(CO)_2EMe_2]^+$ und $[C_5H_5Fe(CO)(EMe_2)_2]^+$ in der Reihe E = S < Se < Te steigt [3]. Dementsprechend ist zur Synthese von Kationen $[C_5-H_5Fe(CO)(EMe_2)L]^+$ (E = Se, Te) die photochemische CO-Eliminierung gem. Gl. 3 der thermischen Umsetzung der Monocarbonyl-Kationen vorzuziehen.

Tatsächlich gelingt die Darstellung der Kationen VII und IX ausgehend von den Dicarbonylkomplexen VI und VIII auf photochemischem Wege problemlos und in guten Ausbeuten (Gl. 4,5), Die Problematik eines der photochemischen Substitution von CO vorgeschalteten Austausches von EMe_2 gegen L stellt sich auch hier. Im Falle von IX konnte ein solcher Prozess jedoch noch für L = PMe₃ beobachtet werden, was die vergleichsweise hohe Stabilität der Eisen-Tellur-Bindung dokumentiert.

Carbonylfreie Cyclopentadienyleisen-Kationen $[C_5H_5FeL_3]^+$ erfordern zur Stabilisierung die Gegenwart starker Donorliganden EMe₃ (E = P, As, Sb) oder P(OR)₃ [8,9] bzw. die Nutzung des stabilisierenden Chelat-Effekts [10]. Die Existenz von $[C_5H_5Fe(CH_3CN)_3]^+$ konnte durch Abfangreaktionen glaubhaft gemacht werden [11,12], eine Isolierung ist jedoch nur bei Verwendung des stabilisierenden Pentamethylcyclopentadienyl-Liganden gelungen [13].

Wir hatten gezeigt, dass in der Reihe der Liganden EMe_2 dem Dimethyltellur die stärkste Donorkapazität zukommt, die es in dieser Hinsicht in die Nähe der Trialkylphosphane rückt [3]. Während die Synthese von $[C_5H_5Fe(TeMe_2)_3]^+$ bislang – möglicherweise bedingt durch die starke Abstossung der freien Elektronenpaare in den koordinierten TeMe₂-Liganden – nicht gelungen ist, lassen sich in VIII (nicht jedoch in VI) beide Carbonylgruppen photochemisch durch P-Donorliganden

(Fortsetzung s. S. 22)

TABELLE 1

EXPERIMENTELLE UND ANALYTISCHE DATEN DER KOMPLEXE II-XI

Komplex		Farbe	Synthese		Analysen ((Gef. (ber.) (%))		
			Verfahren	Ausbeute (%)	C «	, H	Fe ^b	
[CpFe(CO)(SMe ₂)(PPh ₃)]BF ₄	(IIa)	orangerot	۲	72	55.65	4.75	06.6	
					(55.75)	(4.68)	(76.6)	
[CpFe(CO)(SMe2)(AsPh3)]BF4	(qII)	braunrot	A	64	51.50	4.30	9.35	
					(51.69)	(4.34)	(9.24)	
[CpFe(CO)(SMe2)(SbPh3)]BF4	(IIc)	rotbraun	A	54	48.05	4.10	8.48	
					(47.97)	(4.03)	(8.58)	
[CpFe(CO)(SMe2)(P(OMe)3)]BF4	(IIIa)	bei RT braun-	A	80	I	. 1	13.00	
		rotes Öl					(13.24)	
[CpFe(CO)(SMe ₂)(P(OPh) ₃)]BF ₄	(q111)	bei RT braun-	¥	57	I	I	9.01	
		rotes Öl					(9.18)	
[CpFe(CO)(SMe2)(SeMc2)]BF4	(Va)	braun	B	85	29.40	4.20	13.60	
					(29.52)	(4.21)	(13.72)	
[CpFe(CO)(SMe2)(TeMe2)]BF4	(q _N)	braun	B	70	26.30	3.70	12.15	
					(26.37)	(3.76)	(12.26)	
[CpFe(CO)(SMe2)(PMe3)]BF4	(Vc)	gelbrot	B	87	35.25	5.35	14.80	
					(35.33)	(5.39)	(14.93)	
[CpFe(CO)(SMe ₂)(P(NMe ₂) ₃)]BF ₄	(PA)	dklrot	B	74	36.30	6.20	12.26	
					(36.47)	(6.34)	(12.11)	
[CpFe(CO)(SeMe ₂)(PMe ₃)]BF ₄	(VIIa)	braungelb	B	84	31.55	4.90	13.50	
					(31.39)	(4.79)	(13.27)	
[CpFe(CO)(SeMe ₂)(P(NMe ₂) ₃)]BF ₄	(VIIb)	dklrot	B	63	32.96	5.70	10.87	
					(33.10)	(5.75)	(10.99)	
[CpFe(CO)(SeMe ₂)(PPh ₃)]BF ₄	(VIIc)	hellrot	B	95	51.30	4.30	9.04	
					(51.44)	(4.32)	(0.20)	

	[CpFe(CO)(SeMe ₂)(AsPh ₃)]BF ₄	(VIId)	braunrot	B	83	47.85	4.00	8.51	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$;				(47.97)	(4.03)	(8.58)	
	[CpFe(CO)(SeMe ₂)(SbPh ₃)]BF ₄	(VIIe)	rotbraun	B	71	44.50	3.70	7.93	
$ [CpFe(CO)(reMe_2)(FeMe_2)]BF_4 (VIIf) dklbraun B 75 2381 335 110 (118 (PFe(CO)(reMe_2)(FMe_2)]BF_4 (IXa) orangegelb B 75 2380 (3.42) (1118 (118 (PFe(CO)(reMe_2)(FPh_3)]BF_4 (IXb) dklrot B (P 2 (28.14) (4.29) (3.42) (1118 (P 2 (20)(reMe_2)(FPh_3)]BF_4 (IXc) rotgelb B (P 2 (20)(reMe_2)(FP(OPh_3)_2)]BF_4 (IXc) rotgelb B (P 2 (20)(reMe_2)(FP(PAP_3))]BF_4 (IXc) rotgelb B (P 2 (20)(reMe_2)(FP_2)(reMe_2)(FP_2)(reMe_2)(FP(OPH_3)_2)]BF_4 (IXc) rotgelb B (P 2 (20)(reMe_2)(FP(OPH_3)_2)]BF_4 (IXc) rotgelb B (P 2 (20)(reMe_3)(FP_2)(reMe_3)(FP_2)(reMe_2)(FP(OPH_3)_2)]BF_4 (IXc) rotgelb B (P 2 (20)(reMe_3)(FP_2)(reMe_3)(FP_2)(reMe_3)(FP(20)(reMe_3)(reMe_3)(reM(P 2 (20)(reMe_3)(reM(P 2 (20)(reM(P 2 ($						(44.75)	(3.76)	(8.00)	
	[CpFe(CO)(SeMe2)(TeMe2)]BF4	(JIIV)	dklbraun	æ	75	23.81	3.35	11.00	
						(23.90)	(3.42)	(11.11)	
$ [CpFe(CO)(TeMe_2)(P(NMe_2)_3)]BF_4 (TXb) dkIrot B (40) (11.8) (4.29) (11.8) (4.29) (11.8) (2.25) (100 (100 (100 (100 (100 (100 (100 (10$	{CpFe(CO)(TeMe ₂)(PMe ₃)]BF ₄	(IXa)	orangegelb	8	75	28.02	4.10	11.71	
$ [CpFe(CO)(TeMe_2)(P(NMe_2)_3)]BF_4 (IXb) dklrot B 40 30.40 5.20 101 [CpFe(CO)(TeMe_2)(PPh_3)]BF_4 (IXc) rougelb B 83 4750 3.90 8.5 [CpFe(CO)(TeMe_2)(AsPh_3)]BF_4 (IXc) rougelb B 57 44.40 3.61 7.5 [CpFe(CO)(TeMe_2)(SOPh_3)]BF_4 (IXc) routh B 57 44.40 3.61 7.5 [CpFe(TeMe_2)(SOPh_3)]BF_4 (IXc) routh B 53 41.95 3.40 7.5 [CpFe(TeMe_2)(P(Me_3)_2)]BF_4 (Xb) gelb B 8 7 3 41.95 3.40 7.5 [CpFe(TeMe_2)(P(OMb_3)_2)]BF_4 (Xc) rougelb B 8 87 2.9.40 5.49 10.5 [CpFe(TeMe_2)(P(OMb_3)_2)]BF_4 (X1a) gelb B 8 87 2.9.40 5.49 10.5 [CpFe(TeMe_2)(P(OMb_3)_2)]BF_4 (X1a) gelb B 8 87 2.9.40 5.49 10.5 [CpFe(TeMe_2)(P(P,PT_4Ph_2)]BF_4 (X1a) gelbraun B 88 7 2.9.40 5.49 10.5 [CpFe(TeMe_2)(Ph_2PCH_2PPh_2)]BF_4 (X1a) gelbraun B 88 7 2.9.40 5.49 10.5 [CpFe(TeMe_2)(Ph_2PCH_2PPh_2)]BF_4 (X1a) gelbraun B 88 7 2.9.40 7.5 [CpFe(TeMe_2)(Ph_2PCH_2PPh_2)]BF_4 (X1a) gelbraun B 88 7 7.10 4.51 6.5 [CpFe(TeMe_2)(Ph_2PC_3H_4PPh_2)]BF_4 (X1b) romageglb B 8 9 51.91 4.79 7.1 [CpFe(TeMe_2)(Ph_2PC_5H_6PPh_2)]BF_4 (X1b) rangegelb B 8 9 51.91 4.79 7.1 [CpFe(TeMe_2)(Ph_2PC_5H_6PPh_2)]BF_4 (X1b) rangegelb B 8 9 51.91 4.79 7.1 [CpFe(TeMe_2)(Ph_2PC_5H_6PPh_2)]BF_4 (X1b) rangegelb B 70 52.41 4.07 7.4 1.45 7.1 1.45$						(28.14)	(4.29)	(11.89)	
	[CpFe(CO)(TeMe2)(P(NMe2)3)]BF4	(qXI)	dklrot	B	40	30.40	5.20	10.17	
$ [CpFe(CO)(TeMe_2)(PPh_3)]BF_4 (IXc) rolgelb B 83 47.50 3.90 8.5 [CpFe(CO)(TeMe_2)(AsPh_3)]BF_4 (IXd) rolbraun B 57 44.40 3.61 7.5 [CpFe(CO)(TeMe_2)(SbPh_3)]BF_4 (IXe) braunrot B 53 (47.62) (4.00) (8.5 [CpFe(CO)(TeMe_2)(SbPh_3)]BF_4 (IXe) braunrot B 53 41.95 3.40 7.5 [CpFe(TeMe_2)((P(Me_3)_2)]BF_4 (Xa) gelb B -^{\circ}$						(30.21)	(5.25)	(10.03)	
$ [CpFe(CO)(TeMe_2)(AsPh_3)]BF_4 (IXd) tothraun B 57 (47.62) (4.00) (8.5 (7.5)) (7.6) (7.6) (7.5 (7.5)) (7.6) (7.$	[CpFe(CO)(TeMe ₂)(PPh ₃)]BF ₄	(IXc)	rotgelb	B	83	47.50	3.90	8.50	
$ [CpFe(CO)(TeMe_2)(AsPh_3)]BF_4 (IXd) rotbraun B 57 4440 3.61 7.9 (79) (79) (79) (79) (79) (79) (79) (79$			I			(47.62)	(4.00)	(8.52)	
$ [CpFe(CO)(TeMe_2)(SbPh_3)]BF_4 (IXe) braunrot B 53 (44.63) (3.75) (7.9 (7.9 (7.6))) [CpFe(TeMe_2)(PMe_2)_2)]BF_4 (IXe) braunrot B 53 (41.83) (3.51) (7.4 (7.6)) (7.6) (7.6)) [CpFe(TeMe_2)((P(OMe)_3)_2)]BF_4 (Xb) gelb B 87 (41.83) (3.51) (7.6 (7.6)) (7.6) ($	[CpFe(CO)(TeMe ₂)(AsPh ₃)]BF ₄	(IXd)	rotbraun	B	57	44.40	3.61	7.90	
$ [CpFe(CO)(TeMe_2)(SbPh_3)]BF_4 (IXe) braunrot B 53 41.95 3.40 7.5 (20) (TeMe_2)(PMe_2)_3]BF_4 (IXe) braunrot B 20 (1.83) (3.51) (7.4 (1.83) (3.51) (7.4 (1.83) (3.51) (7.4 (1.83) (3.51) (7.4 (1.83) (3.51) (1.6 (1.84) (1.6) (1.$	•					(44.63)	(3.75)	(1.98)	
$ [CpFe(TeMe_2)((PMe_3)_2)]BF_4 (Xa) gelb B = -^{\circ} (41.83) (3.51) (7.4) (20Fe(TeMe_2)((P(OMe)_3)_2)]BF_4 (Xb) gelb B = 0 (41.83) (3.51) (7.4) (10.6) (20Fe(TeMe_2)((P(OPh)_3)_2)]BF_4 (Xb) gelb B = 0 (29.62) (5.51) (10.6) (20Fe(TeMe_2)(Ph_2PCH_2PPh_2)]BF_4 (Xb) gelbbraun B = 0 (29.62) (5.51) (10.6) (20Fe(TeMe_2)(Ph_2PCH_2PPh_2)]BF_4 (Xb) gelbbraun B = 0 (29.62) (5.51) (10.6) (20Fe(TeMe_2)(Ph_2PC_2H_4PPh_2)]BF_4 (Xb) orangegelb B = 0 (29.62) (5.51) (10.6) (20Fe(TeMe_2)(Ph_2PC_2H_4PPh_2)]BF_4 (Xb) orangegelb B = 0 (29.62) (5.51) (10.6) (20Fe(TeMe_2)(Ph_2PC_2H_4PPh_2)]BF_4 (Xb) orangegelb B = 0 (29.62) (5.51) (10.6) (20Fe(TeMe_2)(Ph_2PC_2H_4PPh_2)]BF_4 (Xb) orangegelb B = 0 (29.62) (5.51) (10.6) (20Fe(TeMe_2)(Ph_2PC_3H_6PPh_2)]BF_4 (Xb) orangegelb B = 0 (29.62) (5.51) (10.6) (20Fe(TeMe_2)(Ph_2PC_3H_6PPh_2)]BF_4 (Xb) orangegelb B = 0 (29.62) (5.51) (20Fe(TeMe_2)(Ph_2PC_3H_6PPh_2)]BF_4 (Xb) orangegelb B = 0 (29.62) (5.51) (20Fe(TeMe_2)(Ph_2PC_3H_6PPh_2)]BF_4 (Xb) orangegelb B = 0 (29.62) (5.51) (20Fe(TeMe_2)(Ph_2PC_3H_6PPh_2)]BF_4 (Xb) (20Fe(TeMe_2)(Ph_2PC_3H_6PPh_2)]BF_4 (Xb) orangegelb B = 0 (29.62) (5.51) (7.5) ($	[CpFe(CO)(TeMe ₂)(SbPh ₃)]BF ₄	(IXe)	braunrot	B	53	41.95	3.40	7.50	
$ [CpFe(TeMe_2)((PMe_3)_2)]BF_4 (Xa) gelb B = -^{\circ}$						(41.83)	(3.51)	(7.48)	
$ [CpFe(TeMe_2)((P(OMe)_3)_2)]BF_4 (Xb) gelb B gelb B 87 29.40 5.49 10.5 [CpFe(TeMe_2)((P(OPh)_3)_2)]BF_4 (Xb) gelb B 85 57.10 4.51 6.3 [CpFe(TeMe_2)((P(OPh)_3)_2)]BF_4 (Xb) gelbbraun B 88 57.10 4.51 6.3 [CpFe(TeMe_2)(Ph_2PC1H_2PPh_2)]BF_4 (X1a) gelbbraun B 88 51.38 4.50 714 [CpFe(TeMe_2)(Ph_2PC_2H_4PPh_2)]BF_4 (Xb) orangegelb B 89 51.91 4.79 71 [CpFe(TeMe_2)(Ph_2PC_3H_6Ph_2)]BF_4 (Xb) crangegelb B 70 53.41 4.79 71 [CpFe(TeMe_2)(Ph_2PC_3H_6Ph_2)]BF_4 (Xb) crangegelb B 70 70 53.41 4.79 71 [CpFe(TeMe_2)(Ph_2PC_3H_6Ph_2)]BF_4 (Xb) crangegelb B 70 70 53.41 4.79 71 [CpFe(TeMe_2)(Ph_2PC_3H_6Ph_2)]BF_4 (Xb) crangegelb B 70 70 53.41 4.79 71 [CpFe(TeMe_2)(Ph_2PC_3H_6Ph_2)]BF_4 (Xb) crangegelb B 70 70 53.41 4.79 71 [CpFe(TeMe_2)(Ph_2PC_3H_6Ph_2)]BF_4 (Yb) crangegelb B 70 70 53.41 4.79 71 [CpFe(TeMe_2)(Ph_2PC_3H_6Ph_2)]BF_4 (Yb) crangegelb B 70 70 53.41 4.79 71 [CpFe(TeMe_2)[Ph_2PC_3H_6Ph_2)]BF_4 (Yb) crangegelb B 70 70 53.41 7.79 71 [CpFe(TeMe_2)[Ph_2PC_3H_6Ph_2)]BF_4 (Yb) cr$	[CpFe(TeMe ₂)((PMe ₃) ₂)]BF ₄	(Xa)	gelb	8	у –	I	ł	1	
[CpFe(TeMe_1)((P(OPh)_3)_2)]BF_4 (Xc) rotgelb B 85 57.10 4.51 6.3 [CpFe(TeMe_2)((P(OPh)_3)_2)]BF_4 (Xta) gelbbraun B 85 57.10 4.51 6.3 [CpFe(TeMe_2)(Ph_2PCJH_2PPh_2)]BF_4 (Xta) gelbbraun B 88 51.38 4.56) (6.2 [CpFe(TeMe_2)(Ph_2PC_3H_4PPh_2)]BF_4 (Xtb) orangegelb B 89 51.91 4.40) (7.4) [CpFe(TeMe_2)(Ph_2PC_3H_6PPh_2)]BF_4 (Xtb) orangegelb B 89 51.91 4.79 71 [CpFe(TeMe_2)(Ph_2PC_3H_6PPh_2)]BF_4 (Xtc) ziegeirot B 70 52.41 4.79 71	$[CpFe(TeMe_2)((P(OMe)_3)_2)]BF_4$	(qX)	gelb	B	87	29.40	5.49	10.55	
[CpFe(TeMe_2)((P(OPh)_3)_2)]BF_4 (Xc) rotgelb B 85 57.10 4.51 6.3 [CpFe(TeMe_2)(Ph_2PCH_2PPh_2)]BF_4 (X1a) gelbbraun B 88 51.38 4.56) (6.2 [CpFe(TeMe_2)(Ph_2PC_H_2PPh_2)]BF_4 (X1a) gelbbraun B 88 51.38 4.50 7.4 [CpFe(TeMe_2)(Ph_2PC_3H_4PPh_2)]BF_4 (X1b) orangegelb B 89 51.91 4.79 7.1 [CpFe(TeMe_2)(Ph_2PC_3H_6PPh_2)]BF_4 (Xib) orangegelb B 70 (51.38) (4.58) 7.1 [CpFe(TeMe_2)(Ph_2PC_3H_6PPh_2)]BF_4 (Xic) ziegeirot B 70 52.41 4.79 7.1			I			(29.62)	(5.51)	(10.63)	
[CpFe(TeMe ₂)(Ph ₂ PCH ₂ PPh ₂)]BF ₄ (XIa) gelbbraun B 88 (75.42) (4.56) (6.2 [CpFe(TeMe ₂)(Ph ₂ PCH ₄ PPh ₂)]BF ₄ (XIa) gelbbraun B 88 51.38 4.50 7.4 [CpFe(TeMe ₂)(Ph ₂ PC ₂ H ₄ PPh ₂)]BF ₄ (XIb) orangegelb B 89 51.91 4.79 7.1 [CpFe(TeMe ₂)(Ph ₂ PC ₃ H ₆ PPh ₂)]BF ₄ (XIc) ziegelrot B 70 52.41 4.79 7.1	[CpFe(TeMe ₂)((P(OPh) ₃) ₂)]BF ₄	(Xc)	rotgelb	Ø	85	57.10	4.51	6.31	
[CpFe(TeMe ₂)(Ph ₂ PCH ₂ PPh ₂)]BF ₄ (XIa) gelbbraun B 88 51.38 4.50 7.4 [CpFe(TeMe ₂)(Ph ₂ PC ₂ H ₄ PPh ₂)]BF ₄ (XIb) orangegelb B 89 51.91 4.79 7.1 [CpFe(TeMe ₂)(Ph ₂ PC ₃ H ₆ PPh ₂)]BF ₄ (XIb) orangegelb B 89 51.91 4.79 7.1 [CpFe(TeMe ₂)(Ph ₂ PC ₃ H ₆ PPh ₂)]BF ₄ (XIc) ziegelrot B 70 52.41 4.79 7.1						(75.42)	(4.56)	(6.23)	
[CpFe(TeMe ₂)(Ph ₂ PC ₂ H ₄ PPh ₂)]BF ₄ (XIb) orangegelb B (51.23) (4.40) (7.4 [CpFe(TeMe ₂)(Ph ₂ PC ₃ H ₆ PPh ₂)]BF ₄ (XIc) ziegelrot B 70 (51.86) (4.58) (7.5 [CpFe(TeMe ₂)(Ph ₂ PC ₃ H ₆ PPh ₂)]BF ₄ (XIc) ziegelrot B 70 (70 (51.41) (4.79) (7.5) (7.	[CpFe(TeMe ₂)(Ph ₂ PCH ₂ PPh ₂)]BF ₄	(XIa)	gelbbraun	B	88	51.38	4.50	7.41	
[CpFe(TeMe ₂)(Ph ₂ PC ₂ H ₄ PPh ₂)]BF ₄ (XIb) orangegelb B 89 51.91 4.79 7.1 (51.86) (4.58) (7.5 [CpFe(TeMe ₂)(Ph ₂ PC ₃ H ₆ PPh ₂)]BF ₄ (XIc) ziegelrot B 7.0 52.41 4.79 7.1						(51.23)	(4.40)	(7.47)	
[CpFe(TeMe ₂)(Ph ₂ PC ₃ H ₆ PPh ₂)]BF ₄ (XIc) ziegelrot B 7.1 (7.3 (7.3 (7.3 (7.3 (7.3 (7.3 (7.3 (7.3	$[CpFe(TeMe_2)(Ph_2PC_2H_4PPh_2)]BF_4$	(AIb)	orangegelb	B	89	51.91	4.79	7.11	
$[CpFe(TeMe_2)(Ph_2PC_3H_6PPh_2)]BF_4$ (XIc) ziegelrot B 70 52.41 4.79 7.1						(51.86)	(4.58)	(7.33)	
	[CpFe(TeMe ₂)(Ph ₂ PC ₃ H ₆ PPh ₂)]BF ₄	(XIc)	ziegelrot	B	70	52.41	4.79	7.11	
7/) (2.4) (1.20)						(52.47)	(4.75)	(7.20)	

spektrometer 300) bestimmt. ^c Wurde nicht analysenrein erhalten.

 $(L = PMe_3 (a), P(NMe_2)_3 (b), P(C_6H_5)_3 (c), As(C_6H_5)_3 (d), Sb(C_6H_5)_3 (e), TeMe_2 (f))$

austauschen (Gl. 6,7). Von den hierbei resultierenden Komplexen konnte Xc nicht analysenrein erhalten werden.

Physikalische und analytische Daten der hier erstmals beschriebenen Komplexe sind in Tabelle 1 aufgeführt; spektroskopische Daten finden sich in den Tabellen 2 und 3.

VIII + 2 PR₃
$$\xrightarrow{hv}$$
 \xrightarrow{Ie} PR₃ (6)
 PR_3 (6)
(R = CH₃ (a), OCH₃ (b), OC₆H₅(c))

VIII + $R_2P(CH_2)_n PR_2$ $R_2P - (CH_2)_n PR_2$ $R_2P - (CH_2)_n$ $R_2P - (CH_2)_n$ (XIa-c)(XIa-c)

TABELLE 2

NMR-DATEN DER KOMPLEXE II-XI (δ in ppm; J in Hz)

Komplex	¹ H-NMR	3			⁷⁷ Se-NM	R ^b	¹²⁵ Te-NN	1R ^b
	C5H5		Ligand					
	δ	J(PH)	δ	J(PH)	δ	J(PSe)	δ	J(PTe)
IIa	5.13(s;br)		SCH ₃ : 2.24					
			C ₆ H ₅ : 7.44–7.57(m;br)					
ΙЬ	5.32		SCH ₃ : 2.31					
			C_6H_5 : 7.45–7.61(m)					
IIc	5.46		SCH ₃ : 2.39					
			C ₆ H ₅ : 7.46					
IIIa	5.25		SCH ₃ : 2.38					
			POCH ₃ : 3.90(d)	11.0				
Шь	5.00		SCH ₃ : 2.43					
			POC_6H_5 : 7.15–7.38(m;br)					
Va	5.28		SCH ₃ : 2.55					
			SeCH ₃ : 2.29					
Vb	5.25		SCH ₃ : 2.47				273.0 ^c	
			TeCH ₃ : 2.14/2.26					
Vc	4.95(d) ^c	1.8	SCH ₃ : 2.35 °					
			PCH ₃ : 1.60(d) ^c	8.0				
Vd	5.28	1.5	SCH ₃ : 2.43					
			PNCH ₃ : 2.69(d)	9 .0				
VIIa	4.90(d)	1.7	SeCH ₃ : 2.29		93.63(d)	42		
			PCH ₃ : 1.61(d)	10.2				
VIIb	5.24(d)	1.1	SeCH ₃ : 2.37/2.47		99.76(d)	22		
			PNCH ₃ : 2.71(d)	9.0				
VIIc	5.13(d)	1.4	SeCH ₃ : 2.22/2.25		86.03(d)	40		
			C ₆ H ₅ : 7.60(m)					
VIId	5.13		SeCH ₃ : 2.10/2.19		69.66			
			C ₆ H ₅ : 7.45–7.55(m;br)					
VIIe	5.15		SeCH ₃ : 2.25/2.27		63.60			
			C ₆ H ₅ : 7.58					
VIIf	4.91 °		SeCH ₃ : 2.30 °		84.11		272.9	
			TeCH ₃ : 2.06/2.17 ^c					
IXa	4.98(d) a	1.8	TeCH ₃ : 2.20/2.23 ^a				309.6(d)	106
			PCH ₃ : 1.65(d) ^d	9.9				
IXb	5.09 ^a		TeCH ₃ : 2.16/2.28 ^a				328.0(d)	57
			PNCH ₃ : 2.68(d) ^a	9.2				
IXc	4.91 ^a		TeCH ₃ : 1.77/2.18 ^a				308.2(d)	103
			C_6H_5 : 7.37–7.58(m) ^{<i>a</i>}					
IXd	5.01 ^a		TeCH ₃ : 1.77/2.18 ^a				281.8 .	
	,		$C_{6}H_{5}$: 7.54(m) ^{<i>a</i>}					
IXe	5.13 ª		TeCH ₃ : 1.75/2.19 ^a				272.4	
			C_6H_5 : 7.54(s;br) ^a					
Xa	5.10(t)	1.6	TeCH₃: 1.77				402.1(t)	15.5
			PMe ₃ : 1.43(m)					
Xb	4.73		TeCH ₃ : 2.07				358.3(br)	
			POCH ₃ : 3.80(d)	10.4				
Xc	4.78		TeCH ₃ : 2.09				324.9(t)	40
			POC_6H_5 : 7.08–7.54(m)					
Xla	4.77		TeCH ₃ : 1.77					
			CH ₂ : 2.78(m)					
			C ₆ H ₅ : 7.43–7.63(m)					

fortgesetzt

Komplex	¹ H-NMR ^a				⁷⁷ S	e-NMR ^b	¹²⁵ Te-NM	1R ^b
	C ₅ H ₅		Ligand					
	δ	J(PH)	δ	J(PH)	δ	J(PSe)	δ	J(PTe)
ХІЬ	4.70(s;br) ^d		TeCH ₃ : 1.21 ^{<i>d</i>} C ₂ H ₄ : 2.55/2.82(br) ^{<i>d</i>} C ₄ H ₅ : 7.52-7.76 ^{<i>d</i>}				373.9(d)	120
XIc	4.56(s;br) ^d		TeCH ₃ : 1.54 ^{<i>d</i>} CH ₂ : 2.26(br) ^{<i>d</i>} PCH ₂ : 2.89(br) ^{<i>d</i>} C ₆ H ₅ : 7.44–7.70(m) ^{<i>d</i>}				374.0(t)	100

TABELLE 2 (Fortsetzung)

^a Bruker WH 270 (270 MHz). ^b Bruker WM 300 (⁷⁷Se: 57.24 MHz; ¹²⁵Te: 94.66 MHz). Verwendete Lösungsmittel: Aceton-d₆; ^c CD₂Cl₂; ^d CD₃NO₂. Verwendete Abkürzungen: s Singulett; d Dublett; t Triplett; m Multiplett; br breit.

Die Liganden EMe, bilden in koordiniertem Zustand prochirale Gruppen, wodurch die Beobachtung des Inversionsvorganges am Chalkogenatom E bei Vorliegen einer geeigneten Symmetrie des gesamten Moleküls bzw. Ions [14] durch Anwendung der DNMR-Spektroskopie möglich wird [15]. Allgemein wird ein Anstieg der Inversionsenergie beim Übergang von schwefelhaltigen Liganden zu seinen schwereren Analogen festgestellt, den wir auch für die Kationen $[C_5H_5Fe(CO)(EMe_2)_2]$ (E = S, Se, Te) beobachtet haben [4]. Die durch Vergleich von ¹³C-NMR-Daten und ΔG^* sichtbare Korrelation veranlasste uns zu einer Überprüfung des dort diskutierten Zusammenhangs zwischen der Elektronendichte am metallischen Zentrum und der Inversionsenergie. Wir fanden hierbei für die tellurhaltigen Verbindungen Koaleszenztemperaturen oberhalb des Messbereichs (>100 °C). Die für die schwefel- und selenhaltigen Komplexe nach der Evring-Gleichung ermittelten Energiewerte der vorstehend erwähnten Verbindungen (Tab. 4) zeigen Schwankungen im Bereich der Fehlergrenze; die zur Abschätzung der relativen Elektronendichte am Komplexzentrum denkbaren Daten der Schwingungsspektroskopie (IR ν (CO), Tab. 4) und Kernresonanz (¹H-NMR δ (C₅H₅), ECH₃; ¹³C-NMR δ (C₅H₅), CO, ECH₃, Tabelle 2 und 3) zeigen anders als in den Kationen $[C_5H_5Fe(CO)_2EMe_2]^+$ und $[C_5H_5Fe(CO)(EMe_2)_2]^+$ [3] kein übereinstimmendes Bild. Es bleibt festzuhalten, dass die Variation der Neutralliganden L in den Kationen $[C_5H_5Fe(CO)(EMe_2)L]^+$ (E = S, Se) keinen erheblichen Einfluss auf die Inversionsbarriere des Chalkogenatoms ausübt.

⁷⁷Se- und ¹²⁵Te-NMR-Daten sind in den letzten Jahren verstärkt zur Charakterisierung von Selen- und Tellurverbindungen herangezogen worden [16,17] Angaben über Koordinationsverbindungen von Selenoethern sind bislang nicht bekannt geworden. Wir fanden nun, dass die Verschiebungen δ (⁷⁷Se) in den selenhaltigen Komplexen [C₅H₅Fe(CO)(SeMe₂)L]⁺ (Tab. 2) entsprechend der zu erwartenden ($\sigma + \pi$)-Ligandeigenschaft von L angeordnet sind derart, dass der stärkste Akzeptor CO die geringste Entschirmung am Selenatom bewirkt: CO < SbR₃ < AsR₃ < SeMe₂ < TeMe₂ < PR₃ < PMe₃ < P(NMe₂)₃ (R = C₆H₅; δ (⁷⁷Se) [C₅H₅-Fe(CO)₂SeMe₂]⁺ 62.82, [C₅H₅Fe(CO)(SeMe₂)₂]⁺ 79.89 ppm).

Da ¹H- und ¹³C-NMR-Daten diese Abfolge nicht lückenlos zeigen und ihre Verschiebungswerte offenkundig durch weitere Parameter überlagert werden,

TABELLE 3

NMR-DATEN DER KOMPLEXE II–XI (δ in ppm; J	in 1	Hz	2)
---	------	----	----

Komplex	¹³ C-NN	IR ^a				³¹ P-NMR ^{<i>b</i>}
	C ₅ H ₅	CO		Ligand		δ
	δ	δ	J(PC)	δ	J(PC)	
IIa	86.13	217.69(d)	28.1	SCH ₃ : 29.67	······································	63.2 ^d
				C(1): 133.19(d)	46.2	
				o-C: 133.94(d)	10.1	
				<i>m</i> -C: 130.10(d)	8.4	
				p-C: 132.25		
ПΡ	83.25	216.29		SCH ₃ : 27.29		
				C(1); 133.08		
				o-C: 132.85		
				<i>m</i> -C: 130.11		
				<i>p</i> -C: 131.62		
IIc	82.69	216.52		SCH ₃ : 28.01		
				C(1): 129.94		
				o-C: 136.10		
				<i>m</i> -C: 130.89		
				p-C: 132.07		
Va	83.02	216.44		SCH ₂ : 27.17		
	•			SeCH ₃ : 14.17		
Vb	82.75	217.79		SCH ₂ : 27.85		
				$TeCH_{2} = -9.24/-11.60$		
Vc	84.76	217.03(d)	30.8	SCH ₂ : 29.27		35.6 °
	•			PCH ₂ : 18.66(d)	32.6	55.0
Vđ	84.05	218.18(d)	39.0	SCH ₂ : 28.05	0210	157.5
	•		•	PNCH _a : 38.66(d)	35	101.0
VIIa ^c	84.30	216.8		SeCH ₃ : 15.69	0.0	32.2
				PCH_{2} : 19.29(d)	32.1	
VIIb	84.34	219.63(d)	38.8	SeCH ₂ : 15.16		160 7
	0.12	(_)	2011	PNCH ₂ : 38.82(d)	4.0	100.7
VIIc	85.68	217.80(d)	28.0	SeCH ₃ : 14.79/17.45		66 1
				C(1): 134.04(d)	32.7	0011
				o-C: 134.00(d)	9.6	
				<i>m</i> -C: 130.10(d)	10.2	
				<i>n</i> -C: 132.21(d)	1.9	
VIId	83.69	217.54		SeCH ₂ : 15.10/17.22		
				C(1): 134.26		
				o-C: 133.52		
				<i>m</i> -C: 130.56		
				<i>n</i> -C: 131.95		
VIIe ^c	81.36	216.03		SeCH ₂ : 17.02/17.18		
				C(1): 129.24		
				o-C: 135.40		
				<i>m</i> -C: 130.57		
				p-C: 131.78		
VIIf	82.34	218.12		SeCH ₁ : 16.26/16.70		
		· · · ·		$TeCH_{3}$: -9.29/-11.02		
IXa	83.80	217.16(d)	33.0	$TeCH_{2}$: -8.71/-8.89		34.0
		(-)		PCH ₂ : 20.69(d)	32.4	
IXb	83.67	220.17(d)	37.0	$TeCH_{1}$: -7.69(d)	3.6	165.4
		()		- 9.05		
				PNCH: 39.09(d)	3.5	

25

fortgesetzt

Komplex	¹³ C-NM	ſR ^a				³¹ P-NMR ^b
	C5H5	CO		Ligand		δ
	δ	δ	J(PC)	δ	J(PC)	
IXc	85.00	218.00(d)	26.7	TeCH ₃ : -7.94/-8.87		73.2
				C(1): 134.57(d)	46.0	
				o-C: 133.99(d)	8.8	
				<i>m</i> -C: 130.00(d)	9.9	
				<i>p</i> -C: 132.06		
IXd	83.25	217.87		$TeCH_3: -8.40/-9.25$		
				C(1): 135.64		
				o-C: 133.60		
				<i>m</i> -C: 130.62		
				<i>p</i> -C: 132.00		
IXe	81.74	216.91		$TeCH_3$; $-7.55/-9.85$		
				C(1): 130.72		
				o-C: 136.01		
				<i>m</i> -C: 130.85		
				<i>p</i> -C: 132.02		
Xa	-			_		33.2
Xb	-			-		38.9
Xc	80.66			$TeCH_3: -7.94$		
				C(1): 152.60(t)	6.7	
				o-C: 121.92		
				<i>m</i> -C: 130.95		
VT.				<i>p</i> -C: 126.27		<u></u>
	-			-		38.9
XID.	78.97			$1eCH_3: -10.34$		96.8
				C_2H_4 : 29.05(t)	19.4	
				C(1): 137.64(m;br)		
				o-C: 131.93(d)	17.0	
				<i>m</i> -C: 130.41(d)	14.1	
VI d	70.07			<i>p</i> -C: 133.29		<i></i>
XIC -	/9.80			$1eCH_3$: -10.25		51.7
				CH_2 : 20.88	140	
				$PCH_2: 28.35(t)$	14.2	
				(1): 139.83(l) 140.65(d)	33.0 20.9	
				140.05(t) • C: 123.61(t)	30.8	
				0 - 0.132.01(1)	4.2	
				133.70(1) 	4./	
				m-C: 129.70(1) 120.22(4)	4.8	
				130.33(l)	4.2	
				p-C: 131.33/131.73		

TABELLE 3 (Fortsetzung)

^a Bruker WM 300 (75.5 MHz). ^b Bruker WP 80 WG (32 MHz). Verwendete Lösungsmittel: Aceton-d₆; ^c CD₂Cl₂; ^d CD₃NO₂. Verwendete Abkürzungen: d Dublett; t Triplett; m Multiplett; br breit.

erscheint uns eine weitergehende Untersuchung von ⁷⁷Se-NMR-Verschiebungen von Metallkomplexen selenhaltiger Liganden bezüglich ihrer Aussagekraft als Sonden zur Betrachtung von Bindungsverhältnissen lohnenswert. Arbeiten von McFarlane et al. demonstrieren eine Parallele der ⁷⁷Se- und ¹²⁵Te-NMR-Verschiebungen analoger Verbindungen, wobei sich die Tellur-Kernresonanz als die empfindlichere Methode erweist [18]. Tatsächlich fanden Gysling et al. für die Isomeren des Komplexes Pt(TeR₂)Cl₂ (R = CH₂CH₂C₆H₅) eine Verschiebungsdifferenz von ca.

45 ppm [19]. Die von uns vermessenen Tellurkomplexe (Tab. 2) zeigen eine Bandbreite für $\delta(^{125}\text{Te})$ von ca. 130 ppm, wobei ebenfalls Liganden mit starkem Donorcharakter eine stärke Tieffeldverschiebung bewirken. Für die Komplexe [C₅H₅Fe(TeMe₂)LL']⁺ ergibt sich in Abhängigkeit von LL' folgende Reihe: (CO)₂ < SbR₃, CO < SMe₂, CO < AsR₃, CO < PR₃, CO < PMe₃, CO < (PR₃)₂ < (P(OMe)₃)₂ < R₂P(CH₂)₄PR₂ < (PMe₃)₂ (R = C₆H₅; $\delta(^{125}\text{Te})$ [C₃H₅Fe(CO)₂Te-Me₂]⁺ 252.5, [C₃H₅Fe(CO)(TeMe₂)₂]⁺ 229 ppm).

Ein Vergleich der Abfolge bei den Carbonylverbindungen mit den entsprechenden Selenkomplexen zeigt, dass in der Reihe der Tellurverbindungen die Liganden $L = SeMe_2$ und TeMe₂ durch zu hohe Abschirmung aus dem Rahmen fallen.

Fig. 1. ⁷⁷Se- und ¹²⁵Te-NMR-Verschiebungen der Kationen $[C_5H_5Fe(CO)(EMe_2)L]^+$; $(E = Se, Te; L = CO (1), SeMe_2 (2), TeMe_2 (3), PMe_3 (4), P(NMe_2)_3 (5), PR_3 (6), AsR_3 (7), SbR_3 (8); R = C_6H_5)$. Die eingezeichnete Gerade entspricht dem in Lit. 18 dokumentierten Zusammenhang zwischen ⁷⁷Se- und ¹²⁵Te-NMR-Verschiebungen.

Komplex ^d	T.	k. e	ΔG^{\ddagger}	$\nu(CO)^{f}$	
r	(K)	(s ⁻¹)	$(kJ mol^{-1})$	(cm^{-1})	
IIa	273	362	53.8	1973	
Пр	268	187.6	53.7	1973	
IIc	258	69.6	52.0	1971	
Va	258	33.3	55.3	1969	
Vb	260	53	54.8	1962	
Vc	245	24	51.9	1967	
Vd	253	57.7	53	1960	•
VIIa	290	11.3	65.1	1959	
VIIb	338	66.1	71.3	1955	
VIIc	302	25.5	65.6	1965	
VIId	_ <i>g</i>	257.5	_	1966	
VIIe	323	3.1	76.2	1965	
VIIf	258	8.0	98.4	1958	
IXa	_ ^g	29.2	_	1954	
IXb	_ 8	68.4	_	1951	
IXc	_ 8	257.5	_	1956	
IXd	_ <i>g</i>	257.5	-	1956	
IXe	_ 8	277.5	-	1954	

^a Bruker WM 300 (300 MHz). ^b Perkin-Elmer 937. ^c Lösungsmittel gemäss Tabelle 2. ^d IIa-Vd Koaleszenz der SMe₂-Gruppen; VIIa-VIIf Koaleszenz der SeMe₂-Gruppen; IXa-IXe Koaleszenz der TeMe₂-Gruppen. ^e Berechnet nach der Eyring-Gleichung. ^f Vermessen als CH₂Cl₂-Film zwischen KBr-Platten. ^g Koaleszenztemperatur oberhalb der Messbereichsgrenze von 345 K.

Möglicherweise beeinflusst die Abstossung der nicht bindenden Elektronenpaare von TeMe₂ und L die ¹²⁵Te-NMR-Verschiebung. Die graphischen Darstellung der Daten $\delta(^{77}Se)$ und $\delta(^{125}Te)$ analoger Kationen $[C_5H_5Fe(CO)(EMe_2)L]^+$ (E = Se, Te) ergibt über den bereits angesprochenen Wechsel der Abfolge von L hinaus ein überraschendes Bild (Fig. 1): Die Werte entsprechen nicht dem von McFarlane ermittelten linearen Zusammenhang, sondern sind bezüglich $\delta(^{125}Te)$ um mehr als 150 ppm zu tieferem Feld verschoben.

Wir schliessen hieraus auf eine markante Änderung der Bindungsverhältnisse beim Übergang von den selen- zu den tellurhaltigen Kationen. Dieser Sachverhalt sowie die Interpretation der Kopplungskonstanten ${}^{2}J({}^{77}Se^{31}P)$ und ${}^{2}J({}^{125}Te^{31}P)$ sind Gegenstand weiterer Untersuchungen.

Experimenteller Teil

Sämtliche Arbeiten wurden in gereinigten Lösungsmitteln unter Schutzgas durchgeführt. Die Verbindungen $[C_5H_5Fe(CO)_2EMe_2]BF_4$, $[C_5H_5Fe(CO)(EMe_2)_2]$ -BF₄ [3] und EMe₂ [20] wurden nach Literaturvorschriften erhalten.

Zur Synthese der in Tabelle 1 aufgeführten Verbindungen wurden folgende Verfahren verwendet:

Methode A: 3 mmol $[C_5H_5Fe(CO)(SMe_2)_2]BF_4$ (I) werden mit 3 mmol des Liganden in 20 ml des Lösungsmittels zum Sieden erhitzt. Anschliessend wird das Filtrat zur Trockene eingeengt und der Rückstand aus Methylenchlorid/Ether umkristallisiert. Rückflussdauer im angeg. Lösungsmittel: IIa (Benzol 4 h), IIb, c und IIIa, b (Dichlorethan 0.5-1 h).

TABELLE 4

Methode B: 3 mmol $[C_5H_5Fe(CO)_2EMe_2]BF_4$ werden in 10 ml Methylenchlorid mit der stöchiometrischen Menge des Liganden 12 h bei Raumtemperatur bestrahlt. Nach Filtrieren und Einengen der Lösung wird der verbliebene Rückstand aus Methylenchlorid/Ether umkristallisiert. Für folgende Verbindungen wurde ein von der Stöchiometrie abweichendes Mengenverhältnis von Ausgangskomplex/Ligand gewählt: Vc (1/2), VIIa (3/4), VIId (1/2), VIIc (1/2), IXc (2/3), IXd (2/3), IVe (2/3), Xc (1/3).

Dank

Die vorstehend beschriebenen Arbeiten wurden von der Deutschen Forschungsgemeinschaft, vom Fonds der Chemischen Industrie sowie von der Studienstiftung des Deutschen Volkes (H.S.) unterstützt. Wir danken der Fa. Hoechst AG, Werk Knapsack (Dr. Klose) für eine Chemikalienspende, dem Max-Planck-Institut für Strahlenchemie (Dipl. -Ing. W. Riemer, J. Bitter, Frl. U. Hans, Fr. B. Slykers) für hilfreiche Messungen sowie Herrn Prof. Dr. P. Sartori für sein freundliches Interesse an unserer Arbeit.

Literatur

- 1 S.G. Murray und F.R. Hartley, Chem. Rev., 81 (1981) 365; H.J. Gysling, Coord. Chem. Rev., 42 (1982) 133.
- 2 Gmelin Handbuch der Anorg. Chemie, Organoiron Compounds B12, Springer Verlag, Heidelberg, 1984.
- 3 N. Kuhn und H. Schumann, J. Organomet. Chem., 276 (1984) 55.
- 4 N. Kuhn und H. Schumann, Inorg. Chim. Acta, 116 (1986) L11.
- 5 N. Kuhn und M. Winter, Chem.-Ztg., 107 (1983) 73; N. Kuhn und M. Winter, J. Organomet. Chem., 276 (1984) C16; N. Kuhn, N. Heuser und M. Winter, J. Organomet. Chem., 267 (1984) 221.
- 6 N. Kuhn, H. Brüggemann, M. Winter und V.M. de Bellis, J. Organomet. Chem., 320 (1987) 391.
- 7 D. Catheline und D. Astruc, J. Organomet. Chem., 248 (1983) C9.
- P.M. Treichel und D.A. Komar, J. Organomet. Chem., 206 (1981) 77; T.P. Gill und K.R. Mann, J. Organomet. Chem., 216 (1981) 65; M.L.H. Green und R.N. Whiteley, J. Chem. Soc. A, (1971) 1943; W. Kläui und H. Werner, J. Organomet. Chem., 54 (1973) 331.
- 9 H. Schumann, Chem.-Ztg., 110 (1986) 121.
- 10 R.B. King, L.W. Houk und K.H. Pannell, Inorg. Chem., 8 (1969) 1042; S.C. Tripathi, S.C. Srivastava und V.N. Pandey, Trans. Met. Chem., 1 (1976) 266; D. Sellmann und E. Kleinschmidt, J. Organomet. Chem., 140 (1977) 211.
- 11 D. Catheline und D. Astruc, J. Organomet. Chem., 272 (1984) 417.
- 12 T.P. Gill und K.R. Mann, Inorg. Chem., 19 (1980) 3007.
- 13 D. Catheline und D. Astruc, Organometallics, 3 (1984) 1094.
- 14 W.B. Jennings, Chem. Rev., 75 (1975) 307.
- 15 E.W. Abel, S.K. Bhargava und K.G. Orrell, Progr. Inorg. Chem., 32 (1984) 1.
- 16 S. Patai (Hrsg.), The Chemistry of Organic Selenium and Tellurium Compounds, Wiley Interscience, New York, 1986.
- 17 R.K. Harris und B.E. Mann, NMR and the Periodic Table, Academic Press, London, 1978.
- 18 H.C.E. McFarlane und W. McFarlane, J. Chem. Soc., Dalton Trans., (1973) 2416.
- 19 H.J. Gysling, N. Zumbulyadis und J.A. Robertson, J. Organomet. Chem., 209 (1981) C41.
- 20 N. Kuhn, P. Faupel und E. Zauder, J. Organomet. Chem., 302 (1986) C4.